

ELIZADE UNIVERSITY, ILARA-MOKIN, ONDO STATE, NIGERIA DEPARTMENT OF MECHANICAL ENGINEERING

SECOND SEMESTER EXAMINATIONS

2017/2018 ACADEMIC SESSION

COURSE:

MEE 310 – Control Systems (3 Units)

CLASS:

300 Level Mechanical Engineering

TIME ALLOWED: 3 Hours

INSTRUCTIONS: Answer **Question 1** and any other **THREE** questions

Date: July, 2018

HOD'S SIGNATURE

a) Briefly answer the following questions:

i. What are the twin goals of Control System Engineering?

ii. Give two (2) advantages of Feedback Control Systems.

iii. Give two (2) disadvantages of Feedback Control Systems.

- b) Many luxury automobiles have thermostatically controlled air-conditioning systems for comfort of the passengers. Sketch a block diagram of an air-conditioning system where the driver sets the desired interior temperature on a dashboard panel. Identify the function of each element of the thermostatically controlled cooling system.
- In the past, control systems used human operator as part of a closed-loop control system. Sketch the block diagram of the valve control system shown in Figure 1-1.

Figure 1-1: Manual control of water level

- d) The student-teacher learning process is inherently a feedback process intended to reduce the system error to a minimum. Construct a feedback model of the learning process and identify each block of the system.
- e) Simplify the block diagram shown in Figure 1-2. Obtain the transfer function relating C(s) and R(s).

Figure 1-2: Block diagram

Question 2

- a) Briefly answer the following questions:
 - i. What is a transducer?
 - ii. Give two (2) types of transducers.
 - iii. Give two (2) characteristics of transducers.
- b) Simplify the block diagram shown in Figure 2-1. Obtain the transfer function relating Y and R.

Figure 2-1: Block diagram of a system

Question 3

- a) Briefly answer the following questions:
 - i. Draw and label a diagram showing constituents of mechatronics.
 - ii. List four (4) key elements of mechatronics.
- b) Figure 3-1 shows a block diagram with input R(s), output Y(s), and disturbance $T_d(s)$. Obtain,
 - i. Output due to R(s)
 - ii. Output due to $T_d(s)$
 - iii. Total output.

Figure 3-1: Block diagram of a system with input, output, and disturbance

Obtain an expression for the sensitivity of the system represented by the block diagram shown in c) Figure 3-2.

Figure 3-2: Block diagram of a simple feedback system

Question 4

- Given that Figure 4-1 describes the transient response of a 2nd-Order system, briefly define (using equations only) the following terms:
 - i. Rise time
 - ii. Peak time
 - Maximum (percentage) overshoot
 - Settling time iv.

Figure 4-1: Block diagram of a simple feedback system

Consider the system subjected to unit-step input (refer to Figure 4-2), where ζ =0.62 and ω_n =4.95rad/s. Obtain,

- i. the rise time t_r .
- ii. the peak time tp.
- iii. the maximum overshoot M_p.
- iv. the settling time t_s.

Figure 4-2: Block diagram of a 2nd-Order system

c) Obtain the poles and zeros of the system shown in Figure 4-2.

Question 5

a) A system's characteristic equation is shown below:

$$2s^5 + 3s^4 + 2s^3 + s^2 + 2s + 2 = 0$$

Determine (using Routh Hurwitz criterion),

- i. the stability of the system.
- ii. the number of roots with real parts.
- b) Consider the polynomial of a system given below:

$$s^4 + 2s^3 + 3s^2 + 4s + 5 = 0$$

Show (using Routh Hurwitz criterion),

- i. that the system is unstable.
- ii. that there are two (2) roots with real parts.

Question 6

a) The block diagram of a control system is shown in Figure 6-1.

Figure 6-1: Block diagram of a control system

Answer the following questions:

- i. Simplify the block diagram.
- ii. Obtain the closed-loop transfer function C(s)/R(s).
- b) Given that a system is defined as

$$G(s) = \frac{1}{s+1}$$

Answer the following questions:

- i. Obtain expressions for the real and imaginary parts of $G(i\omega)$
- ii. Draw the Nyquist plot of the system